Rotation Numbers for Measure-valued Circle Maps
نویسنده
چکیده
We consider strong and weak topologies on the space of orbits from the unit interval to the set of probability measures on a given domain. In particular, we are interested in periodic orbits of probability measures on the circle. We show that a real-valued rotation number can be defined in a natural way for all smooth enough orbits whose range is composed of probability measures supported on the whole circle. Next, we show that this number is a continuous functional with respect to an appropriately defined strong topology. The completion of this space contains deterministic orbits as a special case, whose rotation number is an integer, coinciding with the topological degree.
منابع مشابه
Observed Rotation numbers in Families of Circle Maps
Noninvertible circle maps may have a rotation interval instead of a unique rotation number. One may ask which of the numbers or sets of numbers within this rotation interval may be observed with positive probability in term of Lebesgue measure on the circle. We study this question numerically for families of circle maps. Both the interval and “observed” rotation numbers are computed for large n...
متن کاملNIELSEN NUMBERS OF n-VALUED FIBERMAPS
The Nielsen number for n-valued multimaps, defined by Schirmer, has been calculated only for the circle. A concept of n-valued fiber map on the total space of a fibration is introduced. A formula for the Nielsen numbers of n-valued fiber maps of fibrations over the circle reduces the calculation to the computation of Nielsen numbers of single-valued maps. If the fibration is orientable, the pro...
متن کاملOn the numerical computation of Diophantine rotation numbers of analytic circle maps
In this paper we present a numerical method to compute Diophantine rotation numbers of circle maps with high accuracy. We mainly focus on analytic circle diffeomorphisms, but the method also works in the case of (enough) finite differentiability. The keystone of the method is that, under these conditions, the map is conjugate to a rigid rotation of the circle. Moreover, albeit it is not fully j...
متن کاملExamples of non-rigidity for circle homeomorphisms with breaks
We give examples of analytic circle maps with singularities of break type with the same rotation number and the same size of the break for which no conjugacy is Lipschitz continuous. In the second part of the paper, we discuss a class of rotation numbers for which a conjugacy is C1-smooth, although the numbers can be strongly non-Diophantine (Liouville). For the rotation numbers in this class, ...
متن کاملRotation numbers for quasi-periodically forced monotone circle maps
Rotation numbers have played a central role in the study of (unforced) monotone circle maps. In such a case it is possible to obtain a priori bounds of the form »¡ 1=n μ ...1=n†...yn ¡ y0† μ »‡ 1=n, where ...1=n†...yn ¡ y0† is an estimate of the rotation number obtained from an orbit of length n with initial condition y0, and » is the true rotation number. This allows rotation numbers to be com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003